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Abstract
Aims: In the present study, we have analyzed three species of Antilochus viz., A. lineatipes (Stål, 1858), A. russus Stål, 1863 and A. coquebertii (Fabricius, 1803) using differential banding techniques. Chromosome complement of A. lineatipes is described for the first time. Comparative cytogenetic details of three species have been analyzed.
Methods: Adult male specimens of A. lineatipes, A. russus and A. coquebertii were collected from northern parts of India. Air-dried chromosome preparation made from testes were subjected to Conventional staining, C-, fluorescent and NOR banding following techniques suggested by Carr and Walker (1961), Sumner (1972), Rebagliati et al. (2003) and Howell and Black (1980) respectively. 
Results: In A. lineatipes, C bands located at terminal and interstitial regions of autosomes are thick and broad while X2 is intensely C positive. In both A. russus and A. coquebertii, thin terminal C bands are observed on autosomes whereas X chromosome shows two terminal C bands in A. russus and one terminal and one interstitial in A. coquebertii.  The bands have been found to be bright for both the DAPI and CMA3. With silver banding, ten autosomes are intensely stained while three show very thin Ag- positive impregnations in both A. russus and A. coquebertii. DAPI/CMA3 bright heterochromatic bands on X overlap with silver bands. Based on banding patterns of three species, we compared their cytogenetic details to find species-specific cytological markers.
Conclusions: Chromosome banding has yielded certain specific characters for each of the species of Antilochus. A. lineatipes is distinct in possessing a different chromosome complement of 18A+X1X20 with broad C bands on autosomes and an intensely stained X2. A. russus and A. coquebertii possess same chromosome complement of 26A+X0 but can be easily distinguished by size and cytology of the X chromosome. 
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Introduction
Members of family Pyrrhocoridae (Hemiptera: Heteroptera) occur throughout the tropical and subtropical regions of the world with a few species present in temperate areas. The family contains about 33 genera and 340 species (Schuh and Slater 1995, Henry 2009). Cytogenetically, 23 species belonging to 7 genera have been investigated so far, in which diploid chromosome number ranges from 12 to 33, with simple (X0), multiple (X1X20) and neo-sex chromosome systems (neoX-neoY) (Papeschi and Bressa 2006, Bardella et al. 2014, Kaur and Gaba 2015).
Constitutive heterochromatin is a valuable source of study from cytogenetic and evolutionary point of view. Its acquisition and accumulation is regulated by certain constraints and thus closely related species may differ in its amount, position and composition in terms of nucleotide richness (Dey and Wangdi 1990, Bressa et al. 2005, 2008, Franco et al. 2006). Similarly, nucleolar organizer regions (NORs) are other important markers whose number and location are characteristic of a species or a population (Kuznetsova et al. 2007, Morielle-Souza and Azeredo-Oliveira 2007, Panzera et al. 2010).
The genus Antilochus contains two subgenera, Antilochus s. str. comprising twenty one species distributed in Oriental and Australian regions and Afroantilochus Stehlik, 2009 comprising five species from tropical Africa and one each from Tanzania and Madagascar (Stehlik 2009, Stehlik and Kment 2011). Several members of the genus Antilochus are facultatively predaceous and sometimes become obligate predators (Schaefer 1999). 
In Pyrrhocoridae, 23 species belonging to 7 genera have so far been investigated, in which diploid chromosome number ranges from 12 to 33. Most of the studied species (39.13 %) possess 14 autosomes and X0 is the most frequently encountered sex determining mechanism present in 52.17 % cytologically described species. Only two species of Antilochus viz., A. coquebertii (Fabricius, 1803) and A. russus Stål, 1863 have been to date investigated both of which share chromosome complement of 2n=27=26A+X0 (Parshad 1957, Banerjee 1958, Suman 2010, Kaur et al. 2013, Kaur and Gaba 2015). In the present paper, chromosome complement of a new species, A. lineatipes (Stål, 1858) has been described for the first time. Besides, we compared cytogenetic details of three species of Antilochus using differential banding techniques to find species-specific cytological markers.


Materials and Methods
Adult male specimens of A. lineatipes, A. russus and A. coquebertii were collected from northern parts of India. Testes were dissected out in 0.675% saline water and were fixed in freshly prepared Carnoy’s fixative (3: 1/absolute alcohol: glacial acetic acid) for 15 min followed by a second change of the fixative. Conventional Staining was done using methodology suggested by Carr and Walker (1961). C-banding was performed on aged air-dried chromosome preparations of A. lineatipes, A. russus and A. coquebertii following the method suggested by Sumner (1972) with minor modifications. Fluorescent and silver banding was performed on A. russus and A. coquebertii using techniques suggested by Rebagliati et al. (2003) and Howell and Black (1980) respectively. A. lineatipes could not be subjected to these two bandings because of shortage of material.
The slides were observed under a Nikon Optiphot Epifluorescence microscope and images were captured with a Nikon DXM 1200 C digital camera.

Results
A. lineatipes shows a chromosome complement of 2n = 20 = 18A + X1X20 as observed during meiosis (Figs. 2d,e) which is different from that of two already described species, Antilochus russus and A. coquebertii  sharing a common diploid chromosome complement of 2n=27=26A+X0 (Parshad 1957, Banerjee 1958, Suman 2010, Kaur et al. 2013, Kaur and Gaba, 2015).
In A. russus and A. coquebertii, autosomes show gradation in size with X as the largest element of the complement (Figs. 1a-b). Total autosomal length of the two species is nearly equal (37.62μm in A. russus and 37.46μm in A. coquebertii) but a notable difference has been observed in the length of X chromosome of the two species. X is 2.05 μm in A. russus while it is 2.90 μm in A. coquebertii (Table 1 and 2). Total complement length of A. lineatipes with 2n=18A+X1X20 could not be calculated due to unavailability of spermatogonial stage. But meiotic stages of the species clearly show that some of the autosomes are bigger in size than the autosomes of A. russus and A. coquebertii (Figs. 2b-c).
C-, Fluorescent and Silver banding patterns
Three species of Antilochus show differential C banding pattern. In A. lineatipes, thick and broad terminal and interstitial C bands are seen on autosomes and X2 is intensely C positive (Figs. 2a-e). In A. russus, thin terminal C bands are observed on autosomes as well as X chromosome. Two terminal bands of the X are very prominent and remain discernible all through the meiotic cycle up to telophase II (Figs. 2f-j). In A. coquebertii, thin terminal C bands are seen on autosomes while  X chromosome is conspicuous by the presence of an interstitial and a terminal C positive band intervened by a bipartite C negative region (Figs. 2k-o). All the C bands of A. russus (Figs. 3a-h) and A. coquebertii (Figs. 3i-n) appear bright with both DAPI and CMA3.
With silver banding, one large or few small nucleolar bodies are seen in both A. russus and A. coquebertii. In both of them, ten autosomes are intensely stained while three show very thin silver positive impregnations. X chromosome shows dark silver positive regions at termini in the former while in the latter, one terminal and one interstitial silver positive regions are seen (Figs. 4a-h). The silver bands on X chromosome overlap with the DAPI/CMA3 bright heterochromatic bands. 

Discussion
A. lineatipes possesses eighteen autosomes and two sex chromosomes, X1 and X2 (2n=20=18A+X1X20). The two already described species of Antilochus viz., A. russus and A. coquebertii are reported to have twenty six autosomes and single sex chromosome, X (2n=27=26A+X0) (Parshad 1957, Banerjee 1958, Suman 2010, Kaur et al. 2013, Kaur and Gaba 2015). In Pyrrhocoridae, 23 species belonging to 7 genera have so far been investigated, in which, diploid chromosome number ranges from 12 to 33. Most of the studied species (39.13 %) possess 14 autosomes and X0 is the most frequently encountered sex determining mechanism (present in 52.17 % cytologically described species). Besides, X1X20 (39.13 %), X1X2X30 (4.35 %) and neo-XY sex chromosome system (4.35 %) have also been reported in the family (Papeschi and Bressa 2006, Bardella et al. 2014, Kaur and Gaba 2015). 

Banding pattern
In A. lineatipes, autosomes show thick terminal and interstitial bands which are quite broad. Among the two sex chromosomes, X2 is heavily C positive. In earlier investigated species of Pyrrhocoridae with X1X20 sex mechanism (Dysdercus koenigii (Fabricius, 1775) and D. evanescans Distant, 1902), terminal and interstitial bands have been reported in autosomes and only terminal on X1 and X2 (Suman 2010). So, A. lineatipes with completely heterochromatic X2 is a new report in Pyrrhocoridae. In A. russus and A. coquebertii, autosomes show prominent but thin terminal C bands which are positive for DAPI/CMA3 as well as silver staining. The banding pattern of the X chromosome, however, is different in two species. A. russus shows two terminal C bands on the X while there is one terminal and one interstitial C band on the X of A. coquebertii.  The bands are found to be positive for DAPI/CMA3 as well as silver impregnation. In the previously studied pyrrhocorid species with X0 sex mechanism (Dysdercus ruficollis Linnaeus, 1764, D. imitator Blöte, 1931, D. fulvoniger (De Geer, 1773) and D. chaquensis Freiberg, 1948) the X is reported to lack constitutive heterochromatin (Bressa et al. 2002, 2009, Bardella et al. 2014). So, an X chromosome carrying heterochromatic blocks is reported for the first time in Pyrrhocoridae. 
Out of three Antilochus species, one i.e. Antilochus lineatipes possesses 2n=20=18A+X1X20 while two viz., A. russus and A. coquebertii have 2n=27=26A+X0. In Pyrrhocoridae, diploid chromosome number ranges from 12 to 33 and a complement of 14A+X0 is considered as the ancestral complement of the family. Published data on karyotype evolution in Pyrrhocoridae suggests fusions and fragmentations to be the main mechanisms of chromosome evolution (Piza1947 a, b, 1951, Mendes 1949, Mola and Papeschi1997, Bressa et al. 2002, 2003, 2009, Kaur and Gaba, 2015). Considering this, we presume that 18A+X1X2 of A. lineatipes might have originated as a result of fragmentations of a few ancestral autosomes and that of the antecedent X. Whereas, evolution of karyotypes of A. russus and A. coquebertii with 26A+X0 might have involved much higher number of fragmentations of autosomes while X chromosome was retained in the both with some species-specific modifications which resulted in dissimilar X in the two species. We attempted banding of chromosomes to compare the banding pattern of three species and found very interesting and striking results. In A. lineatipes, autosomes possess thick terminal and interstitial C bands which are quite broad. Banding pattern of autosomes in A. russus and A. coquebertii has been found to be very much similar, as both show prominent but narrow terminal C bands which are AT and GC rich. With silver banding, too, autosomes of both A. russus and A. coquebertii show similar staining pattern. However, the two species differ in size, morphology and banding pattern of the X chromosome.  The size of the X chromosome is 2.05 μm in A. russus and 2.90 μm in A. coquebertii. The X chromosome of A. russus is uniform and shows two terminal C bands.  On the other hand, X chromosome of A. coquebertii shows one terminal and one interstitial C band separated by a thin lightly stained euchromatic region.  All the bands on X chromosome stain bright with DAPI/CMA3 and correspond to silver- positive regions indicating them to be the NORs in both the species. Among five previously studied species of Pyrrhocoridae viz., Dysdercus ruficollis Linnaeus, 1764, D. imitator Blöte, 1931, D. chaquensis Freiberg, D. albofasciatus Bergroth, 1878 and Pyrrhocoris apterus Linnaeus, 1758, nucleolar organizer regions have been reported only on one of the autosomal bivalents (Bressa et al. 1999, 2002, 2003, 2009, Grozeva et al. 2011). In D. albofasciatus, two NORs present on the neo-X chromosome, are thought to lie on its autosomal part (Bressa et al. 2009). So, the data so far shows NORs to be originally associated with autosomes in Pyrrhocoridae. However, in A. russus and A. coquebertii, NORs are found on all the autosomes as well as X chromosome. Since NORs have potential to change their position (Schubert and Wobus, 1985) and this intra-genomic mobility of rDNA genes is well supported (Arnheim et al. 1980, Roy et al. 2005, Bressa et al. 2009, Cabral-de-Mello et al. 2011, Poggio et al. 2014), it is implied that origin of these two species of Antilochus (2n=26+X0) from the ancestral species (presumably having 2n=14+X0) involved extensive changes and redistribution of ribosomal DNA  during fragmentation of autosomes along with translocation of rDNA from autosome to the X chromosome.
Further, the X of A. coquebertii is longer than that of A. russus, the additional region being the NOR with constriction. In Nabidae, a similar unstained gap was earlier observed on sex chromosomes of Nabis by Nokkala and Nokkala (1984) and on autosome of Arachnocoris trinitatus Bergroth, 1914 by Kuznetsova et al. (2007) which were considered to be NORs by the authors. Kuznetsova et al. (2007) suggested the NOR material present on the autosome to be translocated from sex chromosomes during A. trinitatus speciation.
Chromosome banding has yielded certain specific characters for each of the species of Antilochus. A. lineatipes is distinct in possessing a different chromosome complement of 18A+X1X20 with broad C bands on autosomes and an intensely stained X2. A. russus and A. coquebertii possess same chromosome complement of 26A+X0 but can be easily distinguished by size and cytology of the X chromosome. 
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                                                               FIGURE LEGENDS
Fig.1. Spermatogonial stage with karyotype a- Antilochus russus. b- Antilochus coquebertii Bar = 10 μm.

Fig.2. C banding pattern of Antilochus lineatipes (a–e) a- diffuse, note the intensely positive X2.b,c-diplotene, note broad terminal and interstitial bands on autosomes. d,e- diakinesis, note the nine autosomal bivalents and two sex chromosomes, X1 and X2. A. russus (f–j) f- diffuse, note two terminal bands on X. g- early diplotene, note thin terminal bands on autosomes and fused bands on X. h, i – diplotene/diakinesis, note two terminal bands on X. j- telophase II, note only one pole with X carrying conspicuous bands. A. coquebertii (k-o) k- diffuse, note two C positive bands on X. l, m, n –diplotene /diakinesis, note thin terminal bands on autosomes and terminal and interstitial band on X, o- metaphase I, note fused bands on condensed X chromosome.  Arrows indicate sex chromosome X.  Arrowheads indicate sex chromosome X2. Bar = 10 μm.

Fig.3. Fluorescent banding pattern of Antilochus russus (a–h), note DAPI/CMA3 bright terminal bands on X as well as autosomes. a, b- diffuse. c–h- diplotene/diakinesis. A. coquebertii (i–n), note terminal and interstitial DAPI/CMA3 bright band on X and thin terminal bands on autosomes. i, j- diffuse. k–n- diplotene / diakinesis. Arrows indicate sex chromosome, X.  Bar = 10 μm.

Fig.4. Silver banding pattern of Antilochus russus(a–d) a, b- diffuse, note the nucleolar bodies and terminal silver positive bands on X. c, d – diplotene / diakinesis, note the silver positive autosomes. A. coquebertii (e–h) e–f- diffuse, note the nucleolar bodies and terminal and interstitial silver positive band on X. g- diplotene, note silver stained autosomes. h- metaphase I, note the bands on X chromosome. Arrows indicate sex chromosome, X. Bar = 10 μm.


                                                                  TABLES

Table 1. Metrical analysis of chromosomes of Antilochus russus (♂)

	Chromosomes
	                                                  Autosomes                                                                                              

	Sex                                                                                                                                                           Chromosome

	Length(µm)
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	X

	
	1.69
	1.66
	1.54
	1.54
	1.54
	1.45
	1.42
	1.42
	1.42
	1.42
	1.27
	1.24
	1.20
	2.05



                                                              

Table 2. Metrical analysis of chromosomes of Antilochus coquebertii (♂)

	Chromosomes
	                                                  Autosomes                                                                                              

	Sex                                                                                                                                                           Chromosome

	Length(µm)
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	X

	
	1.80
	1.69
	1.57
	1.57
	1.45
	1.45
	1.45
	1.39
	1.33
	1.33
	1.30
	1.20
	1.20
	2.90
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